/** * @file emu8910.ts * @brief Tiny AY8910 PSG Emulator - emu8910.ts * * Author: Dylan Müller * * +---------------------------------------+ * | .-. .-. .-. | * | / \ / \ / \ | * | / \ / \ / \ / | * | \ / \ / \ / | * | "_" "_" "_" | * | | * | _ _ _ _ _ _ ___ ___ _ _ | * | | | | | | | \| | /_\ | _ \ / __| || | | * | | |_| |_| | .` |/ _ \| /_\__ \ __ | | * | |____\___/|_|\_/_/ \_\_|_(_)___/_||_| | * | | * | | * | Lunar RF Labs | * | https://lunar.sh | * | | * | RF Research Laboratories | * | Copyright (C) 2022-2024 | * | | * +---------------------------------------+ * * Copyright (c) 2022 Lunar RF Labs * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ const YM_CLOCK_ZX = 1750000; const FIR = [-0.011368, 0.004512, 0.008657, -0.011763, -0.000000, 0.012786, -0.010231, -0.005801, 0.015915, -0.006411, -0.012504, 0.017299, -0.000000, -0.019605, 0.016077, 0.009370, -0.026526, 0.011074, 0.022508, -0.032676, 0.000000, 0.042011, -0.037513, -0.024362, 0.079577, -0.040604, -0.112540, 0.294080, 0.625000, 0.294080, -0.112540, -0.040604, 0.079577, -0.024362, -0.037513, 0.042011, 0.000000, -0.032676, 0.022508, 0.011074, -0.026526, 0.009370, 0.016077, -0.019605, -0.000000, 0.017299, -0.012504, -0.006411, 0.015915, -0.005801, -0.010231, 0.012786, -0.000000, -0.011763, 0.008657, 0.004512, -0.011368] interface Channel{ port : number, counter : number, period : number, volume : number, pan : number, tone : number, noise : number, envelope : number } interface Envelope{ counter : number, period : number, shape : number, stub : any, matrix : any, strobe : number, offset : number, transient : number, store : number, step : number } interface Oscillator{ frequency: number, scale : number, cycle : number, step : number } interface Interrupt{ frequency : number, routine : any, cycle : number, } class Interpolator{ buffer : number[] = []; constructor(){ for(let i = 0; i < 4; i++){ this.buffer[i] = 0x0; } } step(x : number){ let b = this.buffer; b[0] = b[1]; b[1] = b[2]; b[2] = b[3]; b[3] = x; } cubic(mu : number){ let b = this.buffer; let a0,a1,a2,a3,mu2 = 0; mu2 = mu * mu2; a0 = b[3] - b[2] - b[0] + b[1]; a1 = b[0] - b[1] - a0; a2 = b[2] - b[0]; a3 = b[1]; return (a0*mu*mu2 + a1*mu2 + a2*mu + a3); } } // DC filter class BiasFilter { samples : number[] =[]; index : number = 0x0; length : number = 0x0; sum: number = 0x0; attenuate : number = 0x0; constructor(length : number, attenuate : number){ this.length = length; this.sum = 0x0; for(let i = 0; i < this.length; i++){ this.samples[i] = 0x0; } this.attenuate = attenuate; } step(x : number){ let index = this.index; let delta = x - this.samples[index]; let attenuate = this.attenuate; let avg = 0x0; this.sum += delta; this.samples[index] = x; if(++this.index > (this.length - 1)){ this.index = 0x0; } avg = this.sum / this.length; return (x - avg) * (1/attenuate); } } class FirFilter { buffer : number[] = []; index : number = 0x0; offset : number = 0x0; length : number = 0x0; m : number = 0x0; h : number[] = []; constructor(h : number[], m : number){ this.length = h.length * m; this.index = 0; this.m = m; this.h = h; let buffer = this.buffer; for(let i = 0; i < this.length * 2; i++){ buffer[i] = 0x0; } } step(samples : number []){ let index = this.index; let buffer = this.buffer; let length = this.length; let m = this.m; let h = this.h; let y = 0x0; let i = 0x0; this.offset = length - (index * m); let sub = buffer.slice(this.offset); for( i = 0; i < m; i++){ buffer[this.offset + i - 1] = samples[i]; } for( i = 0; i < h.length; i++){ y += h[i] * (sub[i] + sub[h.length - i - 1]); } for( i = 0; i < m; i++){ buffer[this.offset + length - m + i] = buffer[this.offset + i]; } this.index = (index + 1) % (length / m - 1); return y; } } class AudioDriver { host : PSG49; device : AudioContext; context: ScriptProcessorNode; frequency : number = 0x0; filter : (BiasFilter | any)[]; bias : number; constructor(host : PSG49){ this.device = new AudioContext(); let device = this.device; this.filter = [ new BiasFilter(1024, 1.25), new BiasFilter(1024, 1.25), device.createBiquadFilter(), device.createBiquadFilter() ]; let filter = this.filter; filter[2].type = "lowshelf"; filter[2].frequency.value = 10000; filter[2].gain.value = 2; filter[3].type = "lowpass"; filter[3].frequency.value = 10000; filter[3].Q.value = 1; this.frequency = device.sampleRate; this.context = device.createScriptProcessor(4096,0,2); this.context.onaudioprocess = this.update; this.context.connect(filter[2]); filter[2].connect(filter[3]); filter[3].connect(device.destination); this.host = host; this.bias = 0; } update = function(ev : AudioProcessingEvent){ let ch0 = ev.outputBuffer.getChannelData(0); let ch1 = ev.outputBuffer.getChannelData(1); let host = this.host; let filter = this.filter; let bias = this.bias; let output = [0, 0]; let port = [0, 0]; for(let i = 0; i < ch0.length; i++){ output = host.step(); port[0] = filter[0].step(output[0]); port[1] = filter[1].step(output[1]); ch0[i] = bias + port[0]; ch1[i] = bias + port[1]; } }.bind(this); } enum PSG49_LUT{ A_FINE, A_COARSE, B_FINE, B_COARSE, C_FINE, C_COARSE, NOISE_PERIOD, MIXER, A_VOL, B_VOL, C_VOL, ENV_FINE, ENV_COARSE, ENV_SHAPE } class PSG49 { clock : Oscillator; driver : AudioDriver; interrupt : Interrupt; channels: Channel[]; envelope : Envelope; fir : FirFilter[]; oversample : number; interpolate : Interpolator[]; dac : number[]; // main register file register = { A_FINE: 0x0, A_COARSE: 0x0, B_FINE: 0x0, B_COARSE: 0x0, C_FINE: 0x0, C_COARSE: 0x0, NOISE_PERIOD: 0x0, // bit position // 5 4 3 2 1 0 // NC NB NA TC TB TA // T = Tone, N = Noise MIXER: 0x0, A_VOL: 0x0, B_VOL: 0x0, C_VOL: 0x0, ENV_FINE: 0x0, ENV_COARSE: 0x0, ENV_SHAPE: 0x0, PORT_A: 0x0, PORT_B: 0x0 } constructor(clockRate : number, intRate : number){ this.driver = new AudioDriver(this); this.interpolate = [ new Interpolator(), new Interpolator() ]; let m = 8; this.fir = [ new FirFilter(FIR, m), new FirFilter(FIR, m) ]; this.oversample = m; this.clock = { frequency : clockRate, scale : 1/16 * 2, cycle : 0, step : 0 }; this.interrupt = { frequency : intRate, cycle : 0, routine : ()=>{} } this.envelope = { strobe : 0, transient : 0, step : 0, shape : 0, offset : 0, stub : [] } as Envelope; this.channels = [ { counter : 0x0, pan : 0.5, } as Channel, { counter : 0x0, pan : 0.5 } as Channel, { counter : 0x0, pan : 0.5 } as Channel, {counter : 0x0} as Channel ] // seed noise generator this.channels[3].port = 0x1; this.dac = []; this.build_dac(1.3, 40); this.build_adsr(); } build_dac(decay : number, shift : number){ let dac = this.dac; let y = Math.sqrt(decay); let z = shift/31; dac[0] = 0; dac[1] = 0; for(let i = 2; i <= 31; i++){ dac[i] = 1.0 / Math.pow(y, shift - (z*i) ); } } init_test(){ let r = this.register; r.MIXER = 0b00111000; r.A_VOL = 15; //r.A_VOL |= 0x10; r.A_FINE = 200; //r.ENV_COARSE = 200; } build_adsr(){ let envelope = this.envelope; let stub = envelope.stub; stub.reset = (ev : Envelope)=>{ let strobe = ev.strobe; let transient = ev.transient; switch(ev.offset){ case 0x4: transient = 0; case 0x0: ev.step = strobe ? transient : 31; break; case 0x5: transient = 31; case 0x1: ev.step = strobe ? transient : 0; break; case 0x2: ev.step = 31; break; case 0x3: ev.step = 0; break; } } stub.grow = (ev: Envelope)=>{ if(++ ev.step > 31 ){ ev.strobe ^= 1; ev.stub.reset(ev); } }; stub.decay = (ev : Envelope)=>{ if(-- ev.step < 0){ ev.strobe ^= 1; ev.stub.reset(ev); } }; stub.hold = (ev : Envelope)=>{ } envelope.matrix = [ [stub.decay, stub.hold], [stub.grow, stub.hold], [stub.decay, stub.decay], [stub.grow, stub.grow], [stub.decay, stub.grow], [stub.grow, stub.decay], ]; } clamp(){ let r = this.register; r.A_FINE &= 0xff; r.B_FINE &= 0xff; r.C_FINE &= 0xff; r.ENV_FINE &= 0xff; r.A_COARSE &= 0xf; r.B_COARSE &=0xf; r.C_COARSE &= 0xf; r.ENV_COARSE &= 0xff; r.A_VOL &= 0x1f; r.B_VOL &= 0x1f; r.C_VOL &= 0x1f; r.NOISE_PERIOD &= 0x1f; r.MIXER &= 0x3f; r.ENV_SHAPE &= 0xff; } map(){ let r = this.register; let channel = this.channels; let ev = this.envelope; let toneMask = [0x1,0x2,0x4]; let noiseMask = [0x8,0x10,0x20]; this.clamp(); // update tone channel period channel[0].period = r.A_FINE | r.A_COARSE << 8; channel[1].period = r.B_FINE | r.B_COARSE << 8; channel[2].period = r.C_FINE | r.C_COARSE << 8; channel[0].volume = r.A_VOL & 0xf; channel[1].volume = r.B_VOL & 0xf; channel[2].volume = r.C_VOL & 0xf; for(let i = 0; i < 3; i++){ let bit = r.MIXER & toneMask[i]; channel[i].tone = bit ? 1 : 0; } for(let i = 0; i < 3; i++){ let bit = r.MIXER & noiseMask[i]; channel[i].noise = bit ? 1 : 0; } channel[0].envelope = (r.A_VOL & 0x10) ? 0 : 1; channel[1].envelope = (r.B_VOL & 0x10) ? 0 : 1; channel[2].envelope = (r.C_VOL & 0x10) ? 0 : 1; // update channel noise period channel[3].period = r.NOISE_PERIOD << 1; ev.period = r.ENV_FINE | r.ENV_COARSE << 8; ev.shape = r.ENV_SHAPE; switch(ev.shape){ case 0x0: case 0x1: case 0x2: case 0x3: case 0x9: ev.transient = 0; ev.offset = 0; r.ENV_SHAPE = 0xff; break; case 0xb: ev.transient = 31; ev.offset = 0; r.ENV_SHAPE = 0xff; break; case 0x4: case 0x5: case 0x6: case 0x7: case 0xf: ev.transient = 0; ev.offset = 1; r.ENV_SHAPE = 0xff; case 0xd: ev.transient = 31; ev.offset = 1; r.ENV_SHAPE = 0xff; break; case 0x8: ev.offset = 2; break; case 0xc: ev.offset = 3; break; case 0xa: ev.offset = 4; break; case 0xe: ev.offset = 5; break; } if(ev.shape != ev.store){ ev.strobe = 0x0; ev.counter = 0x0; ev.stub.reset(ev); } ev.store = r.ENV_SHAPE; } step_tone(index : number){ let ch = this.channels[index % 3]; let step = this.clock.step; let port = ch.port; let period = (ch.period == 0x0) ? 0x1 : ch.period; ch.counter += step; if(ch.counter >= period){ // 50% duty cycle port ^= 0x1; ch.port = port; ch.counter = 0x0; } return ch.port; } step_envelope(){ let step = this.clock.step; let ev = this.envelope; ev.counter += step; if(ev.counter >= ev.period){ ev.matrix[ev.offset][ev.strobe](ev); ev.counter = 0x0; } return (ev.step); } step_noise(){ let ch = this.channels[3]; let step = this.clock.step; let port = ch.port; let period = (ch.period == 0) ? 1 : ch.period; ch.counter += step; if(ch.counter >= period){ port ^= (((port & 1) ^ ((port >> 3) & 1)) << 17); port >>= 1; ch.port = port; ch.counter = 0x0; } return ch.port & 1; } step_mixer(){ let port = 0x0; let output = [0.0, 0.0]; let index = 0x0; let ch = this.channels; let noise = this.step_noise(); let step = this.step_envelope(); for(let i = 0; i < 3; i++){ let volume = ch[i].volume; let pan = ch[i].pan; port = this.step_tone(i) | ch[i].tone; port &= noise | ch[i].noise; // todo: add dac volume table //bit*=toneChannel[i].volume; // mix each channel if(!ch[i].envelope){ index = step; }else{ index = volume * 2 + 1; } port *= this.dac[index]; // clamp pan levels // distortion over +1 ? if(pan > 0.9){ pan = 0.9; } else if (pan < 0.1){ pan = 0.1; } output[0] += port * (1- pan) ; output[1] += port * (pan) ; } return output; } step(){ let output = []; let clockStep = 0; let intStep = 0; let i = 0x0; let clock = this.clock; let driver = this.driver; let fir = this.fir; let oversample = this.oversample; let interpolate = this.interpolate; let interrupt = this.interrupt; let x = clock.scale; let fc = clock.frequency; let fd = driver.frequency; let fi = interrupt.frequency; clockStep = (fc * x) / fd; clock.step = clockStep / oversample; intStep = fi/ fd; // add number of clock cycle interrupt.cycle += intStep; // do we have clock cycles to process? // if so process single clock cycle let sample_left = []; let sample_right = []; for(i = 0; i < oversample; i++){ sample_left[i] = 0x0; sample_right[i] = 0x0; } if(interrupt.cycle > 1){ interrupt.cycle--; interrupt.routine(); interrupt.cycle = 0; } for(let i = 0; i < oversample; i++){ clock.cycle += clockStep; if(clock.cycle > 1){ clock.cycle--; this.map(); output = this.step_mixer(); interpolate[0].step(output[0]); interpolate[1].step(output[1]); } sample_left[i] = interpolate[0].cubic(0.5); sample_right[i] = interpolate[1].cubic(0.5); } output[0] = fir[0].step(sample_left); output[1] = fir[1].step(sample_right); return output; } }